Confusion Matrix
  
    
      | Actual \ Predicted | Positive | Negative | 
  
  
    
      | Positive | True Positive | False Negative | 
    
      | Negative | False Positive | True Negative | 
  
Derivations
Precision=ActionRecordsTP=TP+FPTP
  - True Positive Rate(TPR), Sensitivity, Recall, HitRate,
TPR=Sensitivity=Recall=HitRate=AllPosTP=TP+FNTP
Specificity=AllNegTN=TN+FPTN
FPR=1−Specificity=AllNegFP=TN+FPFP
ActionRate=AllRecordsActionRecords=AllRecordsTP+FP
F1=2⋅Precision+RecallPrecision⋅RecallIllustration
TPR=TP+FNTP
FPR=TN+FPFP
Precision=TP+FPTP
Recall=TP+FP+TN+FNTP+FP
Curves
Receiver Operating Characteristic (ROC)
One point in ROC space is superior to another if it is to the northwest of the first
  - x-Axis: FPR
- y-Axis: TPR(CatchRate)
Precision-Recall (PR)
  - x-Axis: Recall(HitRate)
- y-Axis: Precision
Lift
  - x-Axis: ActionRate(% Total)
- y-Axis: Lift
  Random: (AllPositive / Total) _ Action = (TP + FN) / (TP + FP + TN + FN) _ (TP + FP)
  UseModel: TP
Lift = UseModel / Random = TP / ((TP + FN) / (TP + FP + TN + FN) * (TP + FP))
Gain
  - x-Axis: ActionRate(% Total)
- y-Axis: HitRate(% Positive)