NumPy - ndarray
Last Updated: 2024-02-13
- fixed size at creation. Changing the size of an ndarray will create a new array and delete the original.
- the elements are of the same data type
n-dimentional array
>>> a = [1,2,3,4]
>>> a
[1, 2, 3, 4]
>>> arr = np.array(a)
>>> arr
array([1, 2, 3, 4])
>>> type(np.array(a))
<class 'numpy.ndarray'>
Check data type
>>> arr.dtype
dtype('int64')
Change the data type
>>> arr.astype(float)
array([ 1., 2., 3., 4.])
>>> arr.astype(float).dtype
dtype('float64')
Get sizes
>>> arr.shape
(4,)
python array vs numpy array
python:
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
numpy:
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
ndarray operations
npa = np.arange(10)
npa.std()
npa.mean()
npa.argmin() #return position of the min value
npa.argmax()
npa ** 2
linspace: (start, end, num)
np.linspace(0, 10, 11) array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
filter
npa[npa %2 == 0]
more efficient than list comprehension
(npa > 15) | (npa < 5)
exception: npa > 15 or npa < 5
boolean selection
>>> import numpy as np
>>> b = np.array([True, True, False, True])
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> a[b]
array([0, 1, 3])
Ravel(Flatten)
>>> np.zeros([2,3,4])
array([[[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]],
[[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]]])
>>> np.zeros([2,3,4]).ravel()
array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
>>> np.zeros([2,3,4]).flatten()
array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
ravel()
will create another view, instead of modifying the original array.